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Abstract. The Hamiltonian of a molecular chain, describing the interaction of excitons (Pauli 
quasi-particles) with acoustic phonons, after a suitable unitary transformation is diagonalised 
using the Bethe ansatz. The spectrum of the collective excitations at T = 0, including strings 
of excitons, is calculated and compared with the energies of classical solitons. Relevant 
experiments are discussed. 

1. Introduction 

The theory of Davydov solitons-non-linear excitations in molecular chains-has 
attracted much attention in the last 15 years (see, e.g., Davydov 1985), because there 
are some indications that similar excitations may exist in living tissues, e.g. nerve pulses. 
Much experimental work (Carreri et a1 1984a, b, 1988) and numerical research (Scott 
1982, MacNeil and Scott 1984, Kerr and Lomdahll987) has been done, but there is no 
definite proof yet. For this reason, the work on this subject continues, in order to obtain 
more realistic models whose predictions might be closely related to the experimental 
results. 

One particular aspect of the present models has not received the necessary attention: 
the whole theory is based on the so-called Frohlich (1952, 1954) Hamiltonian where 
molecular excitations are treated as bosons, which they are not. In fact their nature is 
neither bosonic nor fermionic and, although this fact is well known and well respected 
in the theory of excitons in molecular crystals (Agranovich and Galanin 1982), in the 
soliton theory there have been only a few attempts (to our knowledge) to treat these 
excitations properly (Kruglov 1983, Takeno 1983). 

In this paper, we wish to present a theory which takes into account the proper nature 
of these excitations. Section 2 is devoted to the formulation of an effective Hamiltonian 
and in 8 3 we use the pseudo-spin representation for exciton operators in order to exploit 
the analogy with magnetic systems and to use the results of Bethe ansatz calculations. 
Multi-exciton bound states are compared with classical solitons in § 4. The results are 
discussed and compared with relevant experimental data, in the concluding section, 9 5, 
together with a review of open questions. 
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2. Effective Hamiltonian of the system 

We shall study the simple molecular chain with one molecule per site and the molecular 
separation (lattice constant) will be denoted by a. We shall suppose that the first excited 
level is well separated from the other levels, so that they can be all neglected. In this 
way, we are dealing with a simple two-level scheme: a molecule at site n can be either 
in its ground state or in the excited state separated from the ground state by the energy 
A. The dipole-dipole interaction of nearest neighbours is described by the resonant 
energy I .  

The system of excitons is then described by the Hamiltonian 

P,, are so-called Pauli operators, creating an exciton at the site II. They satisfy the 
following commutation relations: 

The system is not rigid; so we must include lattice vibrations in the calculation. We 
shall take into account only the longitudinal branch of acoustical phonons since the 
coupling of excitons with this branch is the most important effect. For this reason, we 
accept the following form of the phonon Hamiltonian: 

f i p h  = 2 hw,6,+6,'. 
4 

6: creates the phonon with the wavevector q. The phonon dispersion law is 

where uo is the velocity of sound. 
We shall study here the case of strong (local) exciton-phonon coupling of the form 

( 2 . 5 ~ )  

The coefficient x(q)  is given by the expression (Davydov 1985) 

x(q)  = 2 i ~ ( f i / 2 ~ ~ w ,  ) sin(qa) (2.5b) 
* 

where M is the mass of the molecule and x is the exciton-phonon coupling constant. 
The total Hamiltonian of the system is the sum of these three terms: 

The general treatment of this Hamiltonian is not possible; so we shall try a different 
approach. We are going to perform a unitary transformation which will help us to 
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‘decouple’ excitons and phonons, in the sense that will be explained later. We introduce 
the equivalent Hamiltonian 

A,, = exp(is^) A exp( - is) (2.7) 
by the unitary transformation with the Hermitian operator f :  

Choosing F(q)  in the form 

F(q)  = -ix(d/fimq 

we obtain 

(2.10) 

where the operator f,, is defined by 

(2.12) 

We shall study the system at T = 0, by averaging A,, over the phonon vacuum. In 
this way, the influence of the phonons is introduced through coefficients and an effective 
exciton-exciton coupling; so we obtain 

T ’ X  X2 P ;  P ,  P;, 1 P n  f 1 
M O O  n 

(2.13) 

where the renormalised resonant interaction becomes 

J = 2zph(o/ f n  IO)ph*  (2.14) 

The Hamiltonian (2.13) will be the starting point of further calculation. (It is impor- 
tant to note that renormalisation due to the coupling with phonons leads to a Hamiltonian 
whose form is similar to the BCS Hamiltonian.) 

We wish to stress already here the differences between our results up to now and 
those from the usual treatment (Davydov 1985), which describes excitons in terms of 
Bose operators. First of all, such a substitution means that more than one excitation is 
allowed on one site, which is a physically incorrect picture. Practically, the result of the 
transformation (2.7) performed with Bose operators B instead of Pauli operators P 
would introduce an extra term in He, (equation (2.13)) of the form (B;B,)’. This term 
describes the scattering on the delta potential and has certain important consequences 
(Kapor et a1 1989). 
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3. Analogy with magnetic systems 

An extensive literature exists concerning the magnetic systems with spin 4, and we wish 
to exploit these results. It can be done rather easily, if one remembers that any two-level 
system can be represented by operators of spin 4, which are then entitled pseudo-spins. 
If we use the fact that Pi P n  = 0 for the ground state, we can write the following equations 
(which treat spins as dimensionless variables): 

s, = P ;  s; = P ,  9; = 4 - p i p n  (3.1) 

where the ground state of the system corresponds to the configuration of all pseudo- 
spins ‘pointing up’, i.e. (S’) = 4N. 

Using this representation, He,, (equation (2.13)) takes the form common for the 
Heisenberg ferromagnetic chain with ‘easy-plane’ or ‘easy-axis’ anisotropy: 

H,ff = E O  (4 - S;) - JC [S ;S . ,+ ,  + sY,sY,+I + g(SiSi+I - t) ]  (3.2) 
n n 

where 

E O  = A - 2 x 2 / M ~ i  g = X~/MU;J. (3.3) 
(One should note that the term analogous to the external field is always present A # 0; 
so the ground state is always that defined above, irrespective of the ratioJ,/J = g.) 

Now we can use the results based on the Bethe ansatz obtained by Johnson and 
Bonner (1980) and Hodgson and Parkinson (1984) to analyse the spectrum of the 
renormalised exciton system. We obtain the energy of m bound excitons with the 
momentum p :  for g > 1, g = cosh a,  

E,(P,) = meo + Jsinh a[cosh(ma) - cosp,]/sinh(ma) (3.4) 

E,(P,) = + I s in  e [cos(me) - cosp,]/sin(me) (3.5) 

and, for g < 1, g = cos 8,O < 8 < ;2/2, 

wherem = 1 , 2 , .  , . andp,(n/N)v, Y = 0, *l, + 2 , .  . . (73 = 1, a = 1). 

energy 
shifted’ from the energy E,, of an unperturbed exciton: 

~1 = A - JCOSP - x 2 / M u i  

E , ,  = A - ~ Z C O S P .  

Let us briefly discuss some of the consequences of these expressions. Form = 1, the 
of an exciton (renormalised owing to exciton-phonon interaction) is ‘red 

(3.6a) 

(3.6b) 

Since J = 21, we obtain an estimate 

~1 - E,, - X2/Mmi. (3 .6~)  

We shall also quote here the expression for the energy of the bi-exciton (m = 2) and 
show that it represents a stable bound state of two excitons, i.e. that the following is 
valid: 

EZ(P) EI(P1) + E2(P2) (3.7) 
if the total momentum of the system is the same in both cases: 

P = P1+ P2. 
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Using (2.4) or (2 .5) ,  we have 

The condition of bi-exciton stability is 

where the second term on the right-hand side represents the bottom of the two-exciton 
continuum. A simple calculation leads to the result 

A E  = - (J/g)[l -  COS(^/^)]^ < 0 (3.10) 

for g 5 1 ;  so in both cases the bi-exciton is the stable excitation. 
The last relation implies that bound states are formed in the system of excitons for 

any g > 0 (attractive interaction), meaning that a threshold coupling need not exist. It 
is important to stress that this last conclusion is valid only in the case when excitons 
are treated as paulions, which are equivalent to fermions in one spatial dimension 
(Agranovich and Galanin 1982) (see also the Jordan-Wigner transformation, for 
example, in the textbook by Mattis (1988)). 

In this sense, the creation of bound states for any small finite attractive interaction 
can be considered as analogous to Cooper pairing in the system of electrons. 

In the next section we shall analyse the classical soliton excitations of the equivalent 
Hamiltonian and indicate the connection between solitons and bound exciton states. 

4. Solitons in a molecular chain 

Using the definition of spin coherent states (SCS) for S = t (Radcliffe 1971, Perelomov 
1985) 

with the parametrisation 

a,’ = tan(8,/2) exp(i@.) 

we can define the classical spins as the average values of spin operators over scs: 

(4. l a )  

(4. l b )  

( 4 . 2 ~ )  

One should have in mind that the ‘magnetic’ part of the calculation is performed for h = 
1, but it does not influence the proper dimensionality of the results, owing to the 
dimensionless relation (3.1). Using the procedure introduced by Klauder (1960) and 
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Mead and Papanicolaou (1983), we can also define the Lagrangian of the system 
described by the equivalent Hamiltonian (3.2): 

L = (aiifi(T/at)la) - (alAla> = L ,  - x (4.3) 
where 

and 

(4.4a) 

The equations of motion for the conjugated variables ($I,, cos e,) are simply 
classical Lagrangian (or Hamiltonian) equations. Since there exists complete analogy 
with the classical anisotropic Heisenberg chain (Tjon and Wright 1977, Kapor et a1 1986, 
Haldane 1982, Nakamura et a1 1983), we shall not solve here the equations of motion 
for e(x, t )  and $I(x, t )  in the continuum approximation (i.e. Landau-Lifshitz equations) 
but quote instead the well known single-soliton solutions in order to analyse the solitons 
in a molecular chain. For simplicity, we shall study only the isotropic chain (g = l ) ,  but 
most of the conclusions are qualitatively valid for the anisotropic case, too. (We shall 
see later that the value g = 1 is good approximation for the a-helix.) 

The single-soliton solution with M = (a/C,(i - 3;) 1 a) excited molecules ( M  is the 
magnetisation of the ferromagnetic chain and corresponds to the number of rotated 
spins since h = 1) and total momentump, defined in the continuum approximation (Tjon 
and Wright 1977) by 

has the following form (Haldane 1982): 

COS[~(X,  t ) ]  = 1 - 29,'o/cosh2[(2/lo)(x - ut )]  

with the following characteristic properties: an amplitude of 

9; = sin2(pa/2h) = sin2(ka/2) (4.7a) 

a dimension of 

lo = (M/q,i)a = [M/sin2(ka/2)]a 

and a velocity of 

U = (Ja/Mh) sin(ka). 

(4.76) 

(4.7c) 

The soliton energy is obtained from (4.4b) by going over to the continuum and 
substituting (4.6), which for g = 1 leads to 

E = MEO + ( J / M ) [ l  - C O S ( ~ U / ~ ) ] .  (4.81 
We see that the above expression for the soliton energy coincides with the energy of 
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m-bound excitons (3.4) and (3.5) for the case g = 1 and the same momentum p only if 
the number M is ‘quantised’, i.e. if we demand that it takes only the integer values 
(classical value of M = (1/2a)J(1 - cos 0)  dx  need not be an integer!): 

M = m  m = 1 , 2 ,  . . . .  (4.9) 
This last relation represents in fact the Bohr-Sommerfeld semi-classical quantisation 
(Nakamura et a1 1983, Kapor et a1 1986). 

In order to obtain the complete analogy between the soliton energy and the energy 
of bound exciton states (3.4) and ( 3 . 9 ,  we must also perform the ‘box quantisation’ of 
the momentump (or k )  (de Broglie quantisation) for a particle in the chain of the length 
L = Nu: 

k =  NU) Y v = 0, k l , .  . ., tiN. (4.10) 

(This choice of v defines the first Brillouin zone.) 
Analysing equations ( 4 . 7 ~ )  and (4.7b) for soliton amplitude and dimension, we see 

that at the Brillouin zone boundary ( k  = k z / a ) ,  lo = ma and q $  = 1, i.e. the classical 
soliton dimension coincides with the lattice constant a multiplied by the number of 
excited molecules (the number of rotated spins in the magnetic chain). At the Brillouin 
zone centre k = 0, we see that lo diverges and q $  + 0, meaning that ‘soliton’ excitation 
becomes delocalised, turning into an unlocalised exciton state. 

At this point it is important to note that in the standard Davydov treatment, one 
calculates the averages over the so-called ID2) trial function which is the product of 
coherent phonon states and single-particle exciton states. The structure of the exciton 
part implies that no multi-exciton bound states can appear in such a calculation; so most 
of our results would be lost. 

Finally, let us look for the average value of the relative phonon displacement 6,  
(defined by the phonon operators 6, and 6;): 

1 
a 

p = - - c  ( n + l  - 4) 

(4.11) 

Bearing in mind the unitary transformation (2.7) and the fact that the equivalent 
Hamiltonian was averaged over the phonon vacuum, we obtain 

(6,) = ph(O I exp(is^) p n  exp( -iŝ) 1 a) 1 0)ph 

exp(iqna) [exp(iqa) - 1]ph(O/(alexp(is^) 

x (6, + 6!,) exp(-is^) la)(o)ph. (4.12) 

Using the definition of s^, we obtain 

exp(s> 6, exp(-is^> = 6, - i E F(q)  exp(-iqma) P A P ,  (4.13) 
m 

leading to 
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Since 
(aiIS,+P,ia) = (ai(4 - S;)la) = i(1 - cos e,) 

using the solution (4.6) in the continuum approximation, we obtain ((pl+lpn+ = (e p ,  )) 

p(x ,  t )  = -(4ax/Mu;){l - cos[O(x, t ) ] }  = - ( 8 a ~ / M u $ ) { p ~ / c o s h 2 [ ( 2 / Z 0 ) ( x  - ut)]}. 

The phonon displacement can be calculated as 

U ( X ,  t)  = - p(x’ ,  t)  dx’ i 
leading to 

with 
u(x, t )  = uo tanh[(2/lo) (x - ut)] 

uo = ( 4 a ~ / M 4 ) m a .  

(4.15) 

(4.16a) 

(4.16b) 

We can see that the phonon displacement accepts the form of a kink moving along the 
chain with the velocity u o .  

Let us conclude by noting that the phonon displacement u(x, t )  (or p(x, t ) )  in our 
approximation results as the consequence of the excitation of the molecule (owing to 
the interaction between excitons and lattice vibrations), which leads to the displacement 
of the molecule from the equilibrium position; if (pip,) = 0, it follows from (4.12) and 
(4.13) that ph(O/ii,/o)ph = 0. One should not, however, forget that the energy given by 
equation (4.8) or ( 3 . 9 ,  (3.6) represents the energy of the whole system, which was 
calculated by averaging the equivalent Hamiltonian over the phonon vacuum and 
coherent exciton-spin states, so that it cannot be ‘separated’ into an (‘excitonic’) soliton 
energy part and the phonon energy. In other words, the soliton is not a two-component 
entity in our approximation (contrary to Davydov’s picture) but represents some ‘effec- 
tive’ excitation of the total system, whose energy is given by (4.8). 

5. Discussion of the results and conclusion 

It is well known that Davydov (1985) was the first to propose solitons as possible 
collective excitations in biomolecular chains, the a-helix in proteins being the most 
prominent representative. Carreri et a1 (1984a, b) also considered Davydov-like solitons 
in order to explain the IR spectrum of acetanilide (ACN) crystals in which two close chains 
of H-bonded amide groups define quasi-one-dimensional system, which is certainly 
interesting from the biological viewpoint (Carreri 1973). 

We are going to discuss our results with respect to the application to the case of the 
a-helix. (The experimental situation with ACN is more complicated; so this case will not 
be considered here.) 

Numerical values for the parameters characterising the soliton (x, I and the spring 
constant w, where M u ;  = wa2) for the a-helix are usually accepted as follows (Scott 
1982): 

x = (4 - 8) X lo-” N 

M = 2 x kg 

I =  7.8cm-’ = 1.4 x lo-** J 
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w = 13 N m-l 

A = cI = 0.205 eV (= 1650 cm-l) = energy of amide-I bond. 

This leads to the following estimate: 

g = x’/JMwi = x2/21w = 0.6-2. 

We see that the case where g = 1 studied in the previous sections fits the above data well. 
Let us repeat that the important novelty of our approach with respect to Davydov’s 

theory is the appearance of bound exciton states which can be (classically) described as 
solitons-we can call them multi-quantum solitons because they include several bound 
excitations. The two-quantum soliton (with approximate energy =2cI) might be 
especially important in biology, since it is nearly resonant with the energy released 
through the hydrolysis of adenosine triphosphate into adenosine diphosphate (about 
0.43 eV) (Bolterauer and Henkel 1986). This theory needs further refinement con- 
cerning biologically relevant finite temperatures. 

We would like also to comment finally on the previous work based on the treatment 
of excitons as paulions. Takeno (1983) uses the approximation ( S : )  = 0 at T = 0 K but, 
when a localised excitation exists in the system, this might not be the case; so there 
appear to be some doubts about the results. Kruglov (1984) on the other hand averages 
Heisenberg equations of motion for exciton operators and uses a decoupling procedure 
to arrive at a non-linear Schrodinger equation with an additional term. Unfortunately, 
he calculates only functions and no other parameters of the system; so it is difficult to 
compare his results with ours. 
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